About us

We are the research group “Clinical Artificial Intelligence”: a young, diverse, and interdisciplinary group of scientists. We use computational methods to extract actionable knowledge from clinical routine data. Our main tools are Artificial Intelligence and Computational Modeling. We combine these tools with a clinical perspective on health and disease. Our main area of expertise is precision oncology of solid tumors, including immunotherapy. We are global thought leaders in the area of predicting clinically actionable properties of tumors directly from routinely available histopathology slides. To learn more about our research, have a look at our featured publications.

Our affiliations

We are located in Dresden, Germany. Our lab is affiliated with the Faculty of Medicine and the Faculty of Computer Science at Technical University Dresden and is part of the Else Kroener Fresenius Center for Digital Health. In addition, our group is affilated with the Department of Medical Oncology at the National Center for Tumor Diseases Heidelberg, and the Department of Pathology and Data Analytics, University of Leeds, Leeds, UK.

Our funding

Since 2019, our research group has received more than 5 million EUR of third-party funding. We are very grateful for this and we are using these funds to push the boundaries of humanity’s knowledge in cancer research. Among others, our research is funded by the Else Kroener Fresenius Foundation, the German Cancer Aid (Projects “Max Eder research group” and “DECADE”), the German Federal Ministry of Health (Projects “DEEP LIVER” and “TRANSFORM LIVER”), German Federal Ministry of Education and Research (Projects “PEARL” and “SWAG”), the Innovation Fund of the “Gemeinsamer Bundesausschuss” (Project “Transplant.KI”) and EU Horizon (Projects “ODELIA” and “GENIAL”).

Mission statement

The amount of routinely available data in oncology is massively increasing. Currently, we are not using this data for clinical decision making. At the same time, in data science, we are witnessing an exponential increase of state-of-the-art deep learning (DL), especially self-supervised models, transformers and generative models. In just five years, these algorithms have massively pushed the boundary of what was technically feasible to completely new levels. However, as the fields of medicine and data science evolve faster and faster, they are becoming increasingly disconnected. Without structured efforts, it is hard to keep up to date in both fields. Our lab’s mission is to build an interdisciplinary space in which young biologists, medical doctors and computer scientists collaborate and co-develop ideas and methods for improved clinical decision making in cancer.

Sustainability

Planetary health is a prerequisite for individual health. For us as scientists and clinicians, it is imperative to spread awareness: we need to limit global temperature increase and restore biodiversity to protect health.